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A method is proposed for evaluating all matrix elements of the electric field and electric field gradient 
operators in a Slater basis set fo systems with an arbitrary number of nuclei and geometry. These 
integrals are evaluated using a numerical quadrature after having modified the integrand to remove 
all infinities. The integration ranges are broken to avoid integrating through cusps in the integrand. 
With reasonable grids these procedures are adequate for numerical evaluation with an accuracy of 
five to six decimal places (in a.u.). Particular cases are briefly discussed. 

Eine Methode zur Berechnung aller Matrixelemente der Operatoren des elektrischen Feldes und 
des Feldgradienten in einer Slater-Funktionen-Basis bei beliebiger Anordnung der Zentren und Kerne 
wird angegeben. Durch entsprechende Wahl der Integrationsgebiete und Umformungen ist es m6glich, 
Singularit~iten und Spitzen bei der numerischen Integration zu umgehen. Bei verniinftiger Gitterwahl 
erreicht unser Programm eine Genauigkeit von 10 -~ bis 10 -6 aE. 

M6thode pour 6valuer tousles 616ments de matrice des op~rateurs champ et gradient du champ 
61ectrique dans une base d'orbitales de Slater pour des syst6mes ~t nombre de noyaux et g6om6trie 
quelconques. Ces int6grales sont calcul6es par quadrature numbrique en modifiant la fonction 
int6grer pour 61iminer toutes les singularit6s. Le domaine d'int6gration est fractionn6 pour 6viter 
d'avoir ~ int6grer aux points de rebroussement. Avec des r6seaux raisonnables ce proc6d6 est conve- 
nable pour l'~valuation num6rique avec une pr6cision de 5 ~ 6 d6cimales (en u. a.). Des cas particuliers 
sont l'objet d'une br6ve discussion. 

Introduction 
For  m a n y  theoretical  purposes the electronic wavefunct ion of a polyatomic  

molecule is sui tably expanded in Slater type orbitals related to various nuclei. 
The compu ta t i on  of the electronic con t r ibu t ion  to the electric field and  to the 
electric field gradient  at a nucleus  C requires the knowledge of such integrals as 
SX~OcXBdz ,  where X is a Slatcr type orbital,  0 is one of the following one- 
electron operators:  

x y z 3x  2 - r  2 3 y 2 - r 2  3z z - r  z 3 x y  3xz  3yz  
r 3 ~ / .3  , r 3 , r 5  , / .5  ~ r 5 ~ r 5  -~ r 5 , r 5 

and  A, B, C indicate the nuclei  to which the suffixed quant i t ies  refer. The first 
three operators  give the expectat ion values of the electric field componen t s ;  
the others give the matr ix  elements of the electric field gradient  tensor at the 
nucleus [1]. 

The above men t ioned  integrals have been studied by several authors,  main ly  
for the two center case [-2, 3, 4]. Flygare et al. I-5], in a calculat ion of one-electron 
propert ies for the formaldehyde molecule men t i on  some programs for the calcu- 
la t ion of these integrals. One  p rogram is based on the Barne t t -Coulson  expansion 

* Work carried out with the CNR aid. 
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[6] of Slater functions onto the center containing the operator;  another one ex- 
pands the operator and one of the orbitals about the center containing the other 
orbital. An alternative method used by the same authors involves the Gaussian 
transform technique for multicenter integral evaluation [-7]. For  one-electron 
operators, the evaluation of integrals of exponential orbitals reduces therefore 
to a sum of terms, each of which requires a two-dimensional numerical integration. 
The three-center integrals are evaluated, in a program written by G. I. Kerley [5], 
by direct numerical integration over three coordinates. No mathematical device 
is mentioned to remove in this case the infinity arising from the operator on the 
third center. Recently A. D. McLean and M. Yoshimine [8] describe an interesting 
method available for linear molecules. I n  this case, using cylindrical coordinates 
Q, z, cp, the integrals ~ O c X ] X B ~  dE dzdq~ are immediately evaluated in the ~0 
variable, and a numerical quadrature may be developed for the other two variables. 
In using direct numerical integration, it is convenient to remove the infinity 
which may occur at nucleus C. McLean and Yoshimine discuss this problem 
and indicate a way to remove the infinity by working on the functions so that the 
product X~XB vanishes in C without modifying the integral value. Although 
this method may be in principle extended to non-linear cases, we think that the 
following way is more convenient: the operator is multiplied by an appropiate 
function and successively each integral is separated into a sum of two terms, 
which do not present infinities. A program in F O R T R A N  IV language for an 
IBM 7090 computer was written with Slater orbitals of s, p, d type. The calculations 
were carried out at the C.N.U.C.E. in Pisa. 

General Formulae 

The electric field and electric field gradient operators on a nucleus C are all 
linear combinations of functions of the type 

s~'(Oc, <0c) (1) 
r~ +1 

where S'r(,9 o (Pc) are the real harmonic spherical functions. The electric field opera- 
tors have l = 1, the electric field gradient ones have 1 = 2. 

F rom the identity 

rl+ l rl+ l rZ+ l (2) 
L 

where e(r) is an arbitrary finite function and setting 7(r)= (1 -e(r ) ) / r  1+1, a matrix 
element of electric field or electric field gradient operator becomes 

f ST'(Oc, ec) 1=  r~+l X~,X~cl~ 
(3) 

S'p(Oo q~c)y(rc)X~X, dz + [ S'~(Oc, "~ ' e(rc)~"* Y d'c=I ,  + I~ = " F C !  ~ t ' A / " B  _ �9 

J J r C 

The two integrals in (3) may be evaluated in different ways. The integrand of 11 
will not diverge, if ?(r) is anywhere finite. For  this purpose, we set up 

N 

e(r)= e x p ( - ~ )  • (crY/j!) (4) 
j = 0  

with ~ = k r and k = numerical constant. 
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It follows 

y (a )=k  1+1 1 - e x p ( - a )  y '  (aJ/j! a 1+1 (5) 
j = 0  A ~  

o r  

~(o')---kl+l"exp(-a) ~ (aJ - z -1 / j ! ) .  (6) 
j = N + I  

To remove the divergence in It it is sufficient to take N ~ ! in (5) or (6). 
To compute I2 we consider a polar coordinate system centered in C. 

We obtain 
f exp(-~r) N 

12= o~_~ F~ (o~/j!)~(r)do (7) 
j = O  

where o 
fl(r) = f S'f(O, go) X~  X B sinO d~ d o . (8) 

To prove that the integral (7) may be suitably evaluated by a numerical quadrature, 
we expand the product of function X~ X a in a Taylor series about C. We obtain 

( a(x* xB) 1 

If we substitute this expression in eq. (8), all terms of degree less than I vanish, 
so that fl(r) takes the form 

fi(r)= ~ bir  l+i 
i = 0  

and the integral (7) becomes of the type: 

I2=  ~ exp ( - a )  ~ ai ai+t d a .  (10) 
0 i = 0  

This expression shows that the integral (7) does not present difficulties for numerical 
integration and it is in a suitable form to the use of the GauB-Laguerre integra- 
tion points. The integrand in (7) may present cusps at A or B which would require 
a very large number of integration points. To remove this difficulty we take k 
so that we have exp(--krAc ) and exp(--krBc ) sufficiently small. In this way only 
a region about C, which does not include the points A and B, contributes effectively 
to the integral (7). 

Remarks on Computing Formulae and Particular Cases 

In our program the cartesian axes are chosen so that the centers A, B, C are 
located in the following way: A at the origin, B on the z axis and C on the positive 
x z  semiplane. Functions and operators are referred to parallel cartesian systems. 
No difficulty arises in the rotation of axes necessary for the different system 
orientations. To increase the rate of convergence of the numerical quadrature of 
12 we took k = 25 /R  < (in a.u.) where R < is the lowest of RAC and RBC. In all the 
examined cases a grid of 8 x 8 x 8 points gives an error less than 10-7 a.u. To 
evaluate I t we consider elliptic confocal coordinates defined about the two centers 
A and B. If high accuracy is required (error ~ 10- 6 a.u.) it is necessary to divide 
the integration range in four parts (see Fig. 1). In the bounded regions Gaug 
quadrature points were used, GauB-Laguerre's in the others with trivial change 
of variables. Since the ST(g, q~) function changes rapidly near C, the numerical 
integration is done for N > l, so that 7(a) vanishes at C. We put N = l +  2. The 
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7(a) funct ion is eva lua ted  by  means  of (6) for a < 2, otherwise by means  of  (5), 
to ob ta in  at  least seven figures. The  convergence  rate and  the accuracy that  we 
m a y  obta in  are i l lustrated in Tab le  1. In Tab le  2 a compar i son  between our  results 
and  those of  F lygare  et al. [5] is reported.  

A B 

Fig. 1. Ranges of integration 

The  par t icular  case, in which C is relatively away  f rom A and B, mus t  be 
t reated apart .  If  IX~ XBI c = e < 10 -6,  we put  k = 25, N = 1 and  1 = 11 wi thout  any  
division of in tegra t ion  range.  This  p rocedure  m a y  be justified in the following 
way:  considering for example ,  the case l = 2, m = 0, we have 

12 = e x p ( ]  ~r) 1 + o" + da X*XR(3 cos2O - 1) sinO 1,9 dq~ = 64~z~ 
tr 15k 2 

o o o (11) 

This result has been obta ined expanding the product  X * X  B to the 2 n~l degree 
and put t ing 

~2(X~XB)  c = 4 

~ z  2 ~ "  

Table 1. Rate of convergence and accuracy 

Integrat i~176 /2s 3x~-r2 .~ / 3z2-r2 \ 5 Geometry and 
nl n2 n3 n4 ~ \ A  r 5 1s ~/ \ 2 S A ~ I S B /  ~2SA ~ lS \ r c "/ orbital exponents 

16 15 16 8 10 0.007089 0.010390 -0.026071 
16 15 16 10 10 0.007092 0.010462 -0.025963 
16 15 16 12 10 0.007094 0.010479 -0.025933 
16 15 16 14 10 0.007095 0.010478 -0.025934 
16 15 16 16 10 0.007095 0.010477 -0.025936 
16 15 8 16 t0 0.007095 0.010477 -0.025936 
16 15 10 16 10 0.007095 0.010477 -0.025936 
16 15 12 16 10 0.007095 0.010477 -0.025936 
16 9 16 16 10 0.007096 0.010478 -0.025939 
16 11 16 16 10 0.007095 0.010477 -0.025938 
16 13 16 16 10 0.007095 0.010477 -0.025936 
16 15 16 16 10 0.007095 0.010477 -0.025936 
8 15 16 16 10 0.007095 0.010478 -0.025935 

10 15 16 16 10 0.007095 0.010477 -0.025936 
12 15 16 16 10 0.007095 0.010477 -0.025936 

RAB = 2.0 a.u. 
Rac = 2.3 a.u. 
CAB = 120 ~ 

~c = 3.0135 
r/c = -0.7135 

(z= g = 1.625 
(I=B = 1.2 

nl number of integration points for 1 < ~ < r 
n z number of integration points for ~ > ~c 
n3 number of integration points for - 1 < r /<  ~/e 
n4 number of integration points for qc < r /< 1 
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Table 2. Comparison between our result and those of  literature 
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Integral Our value Literature value Geometry and orbital exponents 

1 3x~ -- r~ \ H1 
S c ~  lsn , )  --0.005251 --0.005254 / 

/ 3~~ 1) 
t l  Sc ~ 5 o 5  l s  n 0.010565 0.010567 

/ 3x~176 '/ 
~2sc r ~ l S "  -0.012829 -0.012830 0 O 

/ 3z~- r~ t 2 S c ~  l s  n 0.030401 0.030401 H2  

2 3xg - r 2 \ pzc ~ ls:-i1/ 0.002058 0.002058 

2 3Zo z - r ~  1 \ Roc =2 .3a .u .  p z c ~  snQ -0 .005832 -0 .005832 Rcnl = 2-0 a-u" 

2 3 xg - r~ \ p x c ~  lsn~ -0 .002857 -0.002857 4:OCH = 120 ~ 

2 3zo 2 - r~ \ ~ls c = 5.7 
px c ~ Is@ 0.016038 0.016038 (lsH = 1.2 (:Sc = (2p~ c = (zp~ c = 1.625 

3Xo 2 -- rg \ 
1 SIll ~ 1SH7 -- 0.003377 -- 0.003377 

3ZOO_ r ~ . \  
1 s m ~ 1Sn7 0.007327 0.007327 

The expression (11) for 12 shows that this contribution is effectively negligible 
under the supposed conditions. 

The linear case is developed by the same program with identical formulae, 
except for the integration upon the q~ variable, which is carried out analytically. 
Thus the numerical quadrature is a two-dimensional one and we think that it 
is as efficient as that proposed by McLean and Yoshimine. 

If C coincides with A, R < must be replaced by RAB in the preceding formulae. 
If A coincides with B, we found it more convenient to evaluate these integrals 

by means of the following formulae 

, ,  

r~ = V; , ,  = v;'= , \ / \ r ~ /  

Z(Tc)=  
( 3 y c Z c \  ,, 

4 I =v;z 

2-r~)  2I- ,, 1 ,, 1 
r~ = y Lv;~- y (v;, + v.;) 

3yZ-r2)=  2I ,, 1 ,, 5LV;,, v:=)] 
r~ / = V;;-- ~ (V~. + V;;) 
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where  Vis the  p o t e n t i a l  a r i s ing  f rom the  cha rge  d i s t r i b u t i o n X ] ,  X~ (given ana ly t i ca l ly  
in  [9])  a n d  the  de r iva t ives  V'  a n d  V" are  e v a l u a t e d  at  the  p o i n t  C. 

F ina l l y ,  if A, B, C co inc ide ,  the  c a l c u l a t i o n  of  the  in tegra l s  is i m m e d i a t e l y  
ca r r i ed  o u t  b y  m e a n s  of  t r iv ia l  ana ly t i c a l  fo rmulae .  
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