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A methodis proposed for evaluating all matrix elements of the electric field and electric field gradient
operators in a Slater basis set fo systems with an arbitrary number of nuclei and geometry. These
integrals are evaluated using a numerical quadrature after having modified the integrand to remove
all infinities. The integration ranges are broken to avoid integrating through cusps in the integrand.
With reasonable grids these procedures are adequate for numerical evaluation with an accuracy of
five to six decimal places (in a.u.). Particular cases are briefly discussed.

Eine Methode zur Berechnung aller Matrixelemente der Operatoren des elektrischen Feldes und
des Feldgradienten in einer Slater-Funktionen-Basis bei beliebiger Anordnung der Zentren und Kerne
wird angegeben. Durch entsprechende Wahl der Integrationsgebiete und Umformungen ist es mglich,
Singularititen und Spitzen bei der numerischen Integration zu umgehen. Bei verniinftiger Gitterwahl
erreicht unser Programm eine Genauigkeit von 1075 bis 10~¢ aE.

Méthode pour évaluer tous les éléments de matrice des opérateurs champ et gradient du champ
¢lectrique dans une base d’orbitales de Slater pour des syst®mes 4 nombre de noyaux et géométrie
quelconques. Ces intégrales sont calculées par quadrature numérique en modifiant la fonction a
intégrer pour éliminer toutes les singularités. Le domaine d’intégration est fractionné pour éviter
d’avoir a intégrer aux points de rebroussement. Avec des réseaux raisonnables ce procédé est conve-
nable pour ’évaluation numérique avec une précision de 5 a 6 décimales (en u.a.). Des cas particuliers
sont l’objet d’une bréve discussion.

Intreduction

For many theoretical purposes the electronic wavefunction of a polyatomic
molecule is suitably expanded in Slater type orbitals related to various nuclei.
The computation of the electronic contribution to the electric field and to the
electric field gradient at a nucleus C requires the knowledge of such integrals as
FX50:Xgdr, where X is a Slater type orbital, O is one of the following one-
electron operators:
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and A, B, C indicate the nuclei to which the suffixed quantities refer. The first
three operators give the expectation values of the electric field components;
the others give the matrix elements of the electric field gradient tensor at the
nucleus [1].

The above mentioned integrals have been studied by several authors, mainly
for the two center case [2, 3, 4]. Flygare et al. [5], in a calculation of one-electron
properties for the formaldehyde molecule mention some programs for the calcu-
lation of these integrals. One program is based on the Barnett-Coulson expansion

* Work carried out with the CNR aid.
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[6] of Slater functions onto the center containing the operator; another one ex-
pands the operator and one of the orbitals about the center containing the other
orbital. An alternative method used by the same authors involves the Gaussian
transform technique for multicenter integral evaluation [7]. For one-electron
operators, the evaluation of integrals of exponential orbitals reduces therefore
to a sum of terms, each of which requires a two-dimensional numerical integration.
The three-center integrals are evaluated, in a program written by G. L. Kerley [5],
by direct numerical integration over three coordinates. No mathematical device
is mentioned to remove in this case the infinity arising from the operator on the
third center. Recently A. D. McLean and M. Yoshimine [8] describe an interesting
method available for linear molecules. In_this case, using cylindrical coordinates
0, z, @, the integrals [ Oc X% Xgodedzde are immediately evaluated in the ¢
variable, and a numerical quadrature may be developed for theother two variables.
In using direct numerical integration, it is convenient to remove the infinity
which may occur at nucleus C. McLean and Yoshimine discuss this problem
and indicate a way to remove the infinity by working on the functions so that the
product X% Xy vanishes in C without modifying the integral value. Although
this method may be in principle extended to non-linear cases, we think that the
following way is more convenient: the operator is multiplied by an appropiate
function and successively each integral is separated into a sum of two terms,
which do not present infinities. A program in FORTRAN 1V language for an
IBM 7090 computer was written with Slater orbitals of s, p, d type. The calculations
were carried out at the CN.U.C.E. in Pisa.

General Formulae

The electric field and electric field gradient operators on a nucleus C are all
linear combinations of functions of the type

ST'(9¢s ¢¢)
l_% (1)

s
where S7(3, ¢c) are the real harmonic spherical functions. The electric field opera-
tors have [ =1, the electric field gradient ones have | =2.

From the identity

LD —sro0)| L | sr. 050 @

where ¢(r) is an arbitrary finite function and setting y(r) = (1 — &(r))/r' "7, a matrix
element of electric field or electric field gradient operator becomes

[= J 57 (8¢ @c) Xt Xg do

rLr
£(re) 3)
= j ST (8¢, o) y(ro) Xi Xgdr + J‘ ST (%¢, @c) 71‘”‘:1 XiXgdr=1,+1,.
C

The two integrals in (3) may be evaluated in different ways. The integrand of I;
will not diverge, if y(r) is anywhere finite. For this purpose, we set up

&(r) = exp(—o) _;0 G @)

with o =kr and k= numerical constant.
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It follows N
o) =k'" [1— exp(—oa) ), (Gj/j!)]/al“ (5)

or :0
y(0) =K' -exp(—0) ;ﬂ (@715 (©)

To remove the divergence in I, it is sufficient to take N = [ in (5) or (6).
To compute I, we consider a polar coordinate system centered in C.
We obtain @

L= j ap(29) 5 T @i perds @
B =[ST(S, @) X5 Xgsin$dIde. (8)

To prove that the integral (7) may be suitably evaluated by a numerical quadrature,
we expand the product of function X% Xg in a Taylor series about C. We obtain

OXE X (X% Xp)
Xixa= e+ 3 (PR ) o L3 (TR oy
i i ij C

If we substitute this expression in eq. (8), all terms of degree less than [ vanish,
so that B(r) takes the form o .
Bry= ) byr'*
i=0

and the integral (7) becomes of the type:

where

I,= | exp(—0) Y a6’ do. (10)
0 i=0

This expression shows that the integral (7) does not present difficulties for numerical
integration and it is in a suitable form to the use of the GauB-Laguerre integra-
tion points. The integrand in (7) may present cusps at A or B which would require
a very large number of integration points. To remove this difficulty we take k
so that we have exp(—kr,¢) and exp(—krgc) sufficiently small. In this way only
aregion about C, which does not include the points A and B, contributes effectively
to the integral (7).

Remarks on Computing Formulae and Particular Cases

In our program the cartesian axes are chosen so that the centers A, B, C are
located in the following way: A at the origin, B on the z axis and C on the positive
x z semiplane. Functions and operators are referred to parallel cartesian systems.
No difficulty arises in the rotation of axes necessary for the different system
orientations. To increase the rate of convergence of the numerical quadrature of
I, we took k=25/R_ (in a.u.) where R is the lowest of R,c and Ryc. In all the
examined cases a grid of 8 x 8 x 8 points gives an error less than 1077 a.u. To
evaluate I; we consider elliptic confocal coordinates defined about the two centers
A and B. If high accuracy is required (error ~107¢ a.u.) it is necessary to divide
the integration range in four parts (see Fig. 1). In the bounded regions GauB
quadrature points were used, GauB-Laguerre’s in the others with trivial change
of variables. Since the S7(9, @) function changes rapidly near C, the numerical
integration is done for N >, so that y(o) vanishes at C. We put N =/+2. The
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(o) function is evaluated by means of (6) for ¢ <2, otherwise by means of (5),
to obtain at least seven figures. The convergence rate and the accuracy that we
may obtain are illustrated in Table 1. In Table 2 a comparison between our results
and those of Flygare et al. [5] is reported.

A B
Fig. 1. Ranges of integration

The particular case, in which C is relatively away from A and B, must be
treated apart. If | X% Xglc=e=10"°, we put k=25, N=1and I = I, without any
division of integration range. This procedure may be justified in the following
way: considering for example, the case /=2, m=0, we have

3 27
exp( — 6) 02 . 6471;28
I,= J‘—O_*‘*’<1 +0+ T)dGJ‘ J'XXXBGCOSZS* 1)sinddddp=~ %
0o 0

(8Y)
This result has been obtained expanding the product X% X to the 2°¢ degree

and putting FXEX) 4
A“'B

822 Cz?ﬂZS.

Table 1. Rate of convergence and accuracy

: s 2_ .2 2.2
Integration points < 2, 3xcr e 1SB> < 2s, 3zcr ré 151;> <2SA 3xcze 1SB> Geometry and
C C

ny ny ny n, 7, g orbital exponents

16 15 16 8 10 0.007089 0.010390 —0.026071

16 15 16 10 10 0.007092 0.010462 —0.025963 Ryp=20a.u.
16-15 16 12 10 0.007094 0.010479 —0.025933 Ryc=23au
16 15 16 14 10 0.007095 0.010478 —0.025934 < CAB = 120°
16 15 16 16 10 0.007095 0.010477 —0.025936

16 15 8 16 10 0.007095 0.010477 —0.025936

16 15 10 16 10 0.007095 0.010477 —0.025936 £c=3.0135
16 15 12 16 10 0.007095 0.010477 —0.025936 ne=—0.7135
16 9 16 16 10 0.007096 0.010478 —0.025939 {55, =1.625
16 11 16 16 10 0.007095 0.010477 —0.025938 (rsg=12

16 13 16 16 10 0.007095 0.010477 —0.025936

16 15 16 16 10 0.007095 0.010477 —0.025936

8 15 16 16 10 0.007095 0.010478 —0.025935

10 15 16 16 10 0.007095 0.010477 —0.025936

12 15 16 16 10 0.007095 0.010477 —0.025936

a

n; number of integration points for 1 < ¢ < é¢
n, number of integration points for £ > &¢

ny number of integration points for —1 <z <#¢
n, number of integration points for gc<n <1
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Table 2. Comparison between our result and those of literature

Integral Our value Literature value Geometry and orbital exponents
2_ 2 H
<1 Sc ~3-x°5—r° lsH> —0005251  —0.005254 !
T
<1 s 20 T 1sH1> 0.010565 0.010567
To
3 2 _ .2
<2SCM 1sH1> —0012829  —oo12830 O C
To
3 2 _ .2
<2sc 25T 1sH> 0.030401 0.030401
To H>
3x3—r3
2pze—2 10 15, 0.002058 0.002058
To
3z5—r3 Roc =23au.
1 —0005832  —0.005832
<2p S S“‘> Ry, =202,
3x3—r3 OCH = 120°
épxc%i 1sH> _0002857  —0002857
7o
32513 {15.=57
. . =l,, ={, =1625
<2pxc e 0.016038 0.016038 s 12 Lase=Lap, =lan,

3; 2 __ 2
lsHlMlst> —0003377  —0.003377

1sg, 0.007327 0.007327

/H\/\
w
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The expression (11) for I, shows that this contribution is effectively negligible
under the supposed conditions.

The linear case is developed by the same program with identical formulae,
except for the integration upon the ¢ variable, which is carried out analytically.
Thus the numerical quadrature is a two-dimensional one and we think that it
is as efficient as that proposed by McLean and Yoshimine.

If C coincides with A, R . must be replaced by R, in the preceding formulae.

If A coincides with B, we found it more convenient to evaluate these integrals
by means of the following formulae

Xc Ye Zc
—“=V/, _ZV/’ _=V/
() (%)= (s)-v

3nyC " 3x Z " 3y 2 "
<__5 > =V, =< C> =V, —=c C> =V,
re rc rc

o )
Vie— = (Vy+ V2

[ " 1 " "
Vyy - 7 (Vxx + sz)

-

" 1 ” 1" ]
sz - 7 (Vxx + Vyy)
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where Visthe potential arising from the charge distribution X% X, (givenanalytically
in [9]) and the derivatives V' and V” are evaluated at the point C.

Finally, if A, B, C coincide, the calculation of the integrals is immediately
carried out by means of trivial analytical formulae.
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